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Abstract

Life expectancy has increased considerably over the last century in the United States. It is expected that this longevity will be

accompanied by an increase in the prevalence of osteoporosis and accompanying complications in the elderly population. Age-related loss of

bone mass and bone fragility are major risk factors for osteoporosis, leading to an increased risk of fractures. Therefore, nutritional strategies

and lifestyle changes that prevent age-related osteoporosis and improve the quality of life for the elderly population are urgently needed.

Hence, the present study compared the effects of corn oil (CO; n�6 fatty acids; commonly present in Western diets) and fish oil (FO; n�3
fatty acids) on bone mineral density (BMD) in aging C57BL/6 female mice. After 6 months of dietary treatment, we found that 18-month-old

FO-fed mice maintained higher BMD in different bone regions compared to CO-fed mice. These findings were accompanied by a decreased

activity of pro-inflammatory cytokines, tumor necrosis factor-a and interleukin-6 in stimulated splenocytes; a nonsignificant but greater

increase in bone formation markers alkaline phosphatase and osteocalcin in the serum; and lower osteoclast generation in bone marrow cell

cultures in FO-fed mice. In conclusion, these findings suggest that providing n�3 fatty acids may have a beneficial effect on bone mass

during aging by modulating bone formation and bone resorption factors.

D 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Bone-related disorders are one of the major causes of

mortality and morbidity in the United States. As life

expectancy increases in our fast-growing elderly population,

the need to improve their quality of life requires attention. As

opposed to rapid bone loss associated with menopause in

women, termed Type 1 osteoporosis, there is a slow but

gradual loss of bone in both men and women, termed Type 2

osteoporosis [1]. After attaining peak bone mass between the

ages of 20 and 30 years, both men and women start losing

bone at a rate of 0.5–1% per year. Osteoporosis-related costs

are a major economic concern, with the cost of osteoporosis-

related treatments in the United States expected to increase
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to US$131 billion by year 2050, putting a tremendous

financial burden on society [2]. The type of dietary fat intake

and lifestyle choices (sedentary vs. exercise) are important

determinants of age-related osteoporosis. The fats present in

Western diets consist predominantly of saturated fatty acids

and n�6 polyunsaturated fatty acids (PUFAs) derived from

sources such as corn, safflower, sunflower and soybean oils

[3]. The predominant n�6 fatty acid in these oils is linoleic

acid (LA; 18:2n�6), which is found to act as a pro-

inflammatory fatty acid. In contrast, there is very low intake

of n�3 fatty acids such as a-linolenic acid (ALA; 18:3n�3)
from sources such as flaxseed and canola oils, or eicosa-

pentaenoic acid (EPA; 20:5n�3) and docosahexaenoic acid

(DHA; 22:6n�3) from sources such as marine fishes or fish

oils (FOs), thereby increasing the n�6/n�3 fatty acid ratio in
the diet to 20–25:1 [3]. Increasingly available literature

mainly from animal studies suggests that an increase in the

intake of n�6 fatty acids with a decrease in the intake of n�3
fatty acids and, consequently, high levels of n�6/n�3 ratio

may be positively associated with risks for cardiovascular

diseases, cancer, rheumatoid arthritis and bone loss [4–6].
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able 1

omposition of experimental dietsa

iet ingredients Percentage

asein 14.00

orn starch 42.43

extronized corn starch 14.50

ucrose 9.00

ellulose 5.00

IN-93 mineral mix 3.50
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Some recent studies in humans also correlate an increase in

n�6/n�3 fatty acid ratio with lower hip bone mineral den-

sity (BMD) and increased risk for periodontal disease and

cancer [7–9].

There is considerable evidence to indicate that FO has

beneficial effects against inflammatory diseases such as

systemic lupus erythematosus, rheumatoid arthritis, cardio-

vascular diseases and osteoporosis [5,6,10,11]. The benefi-

cial effects of FO or n�3 fatty acids have been ascribed in

their ability to alter membrane phospholipid fatty acid

composition, which in turn decreases the production of pro-

inflammatory prostaglandins (PGs) and thromboxanes

(TXs) (PGE2 and TXA2) derived from the n�6 fatty acid

arachidonic acid (AA; 20:4n�6; downstream product of LA)

through the cyclooxygenase (COX) pathway. EPA competes

with AA for the synthesis of PGE3 through the COX pathway

[12], thereby suppressing the production of inflammatory

mediators derived from n�6 fatty acids. Although PGE3 has

inflammatory properties, it is synthesized with either low

efficiency or no efficiency [12]. It is well established that

PGE2 in high concentrations is a potent inducer of bone

resorption [13]. FO and low n�6/n�3 fatty acids decrease

PGE2 levels in bone organ cultures [14–16]. Apart from pro-

inflammatory eicosanoids, pro-inflammatory cytokines such

as tumor necrosis factor (TNF)a, interleukin (IL) 1h and IL-6

also induce bone resorption through osteoclast activation and

osteoclastogenesis [17–19]. n�3 fatty acids exhibit anti-

inflammatory properties through the inhibition of these

cytokines and the up-regulation of anti-inflammatory cyto-

kines such as IL-10 [5,6,20].

Studies have shown that FO prevents bone loss in

ovariectomized mice and rats models of postmenopausal

bone loss, compared to diets enriched in n�6 fatty acids, such
as corn oil (CO) [11,21,22]. FO and low n�6/n�3 fatty acids
ratios have also been shown to promote bone formation in

growing animals [14,15,23–26]. However, very few studies

have focused on the effects of FO on bone metabolism during

aging in middle-aged or older animals [27–29]. Thus, the

present study was designed to determine the effect of FO on

BMD in aging C57BL/6 female mice. We measured TNF-a

and IL-6, and alkaline phosphatase (ALP) and osteocalcin

(OC) in FO-fed mice to determine if the beneficial effects

are associated with the modulation of pro-inflammatory

cytokines and bone formation biomarkers. Since TNF-a and

IL-6 are potent stimulators of osteoclast activity, we also

performed tartarate-resistant alkaline phosphatase (TRAP)

staining in bone marrow cells derived from CO-fed and

FO-fed mice as a marker for osteoclast formation.
IN-93 vitamin mix 1.00

-cystine 0.18

holine bitartrate 0.25

BHQ 0.10

itamin E 0.04

O and/or FOb 10.00

BHQ, tert-butylhydroquinone.
a All diet ingredients were purchased from MP Biomedicals.
b FO diet supplemented with 1% CO (FO=9%, CO=1%).
2. Materials and methods

2.1. Animals and experimental diets

Ten-month-old female C57BL/6 mice were obtained from

Harlan (Indianapolis, IN). Weight-matched mice were housed

in a laboratory animal care facility in cages (5 mice/cage) and
fed a standard pellet diet (Harlan Teklad LM-485) for

2 months. At 12 months of age, mice were divided into two

dietary groups and fed AIN-93M semipurified diets with

AIN-93M vitamin and mineral mixes [30] containing either

10% CO or 10% FO (MP Biomedicals, Irvine, CA). One

percent CO was added to the FO diet to prevent essential

fatty acid (EFA) deficiency. Both diets were supplemented

with equal levels of antioxidants. The composition of diet and

oils is shown in Tables 1 and 2, respectively. Fresh diet was

prepared weekly, stored in aliquots at �208C and provided

daily. Mice were maintained on a 12-h light/dark cycle in an

ambient temperature of 22–258C at 45% humidity. National

Institutes of Health guidelines were strictly followed, and all

studies were approved by the Institutional Laboratory Animal

Care and Use Committee of the University of Texas Health

Science Center at San Antonio.

2.2. Measurement of body composition and BMD

BMD, lean body mass and body fat mass were measured

by dual-energy X-ray absorptiometry (DEXA) at baseline

(12 months) and after 6 months of FO treatment (18 months)

using a Lunar PIXImus mouse bone densitometer (General

Electric). Data analysis was carried out manually with

PIXImus software [10]. Calibration of the instrument was

conducted, as suggested by the manufacturer. An aluminum/

lucite phantom (total bone mineral density [TBMD] =

0.0700 g/cm2; % fat=14.0%) was placed on the specimen

tray and measured 25 times without repositioning. There-

after, the phantom was analyzed daily before animal testing

for quality control purposes. Before bone scanning was

performed, mice were anesthetized with intramuscular

injections of ketamine/Rompun/NaCl (3:2:5). The densi-

tometer was calibrated daily with a phantom supplied by the

instrument’s manufacturer. During measurements, the ani-

mals lay in prone position, with posterior legs maintained in

external rotation with tape. The hip, knee and ankle

articulations were in 908 flexion. Upon completion of

scanning, BMD was determined in the following bone areas

using the PIXImus software (version 1.46): distal femoral
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Table 2

Selected fatty acid composition of oilsa

Fatty acids CO FO

14:0 0.14 9.10

16:0 10.50 17.02

16:1 ND 12.87

18:0 2.06 2.78

18:1n�9 27.76 8.08

18:2n�6 56.06 1.27

18:3n�3 1.27 1.67

18:4n�6 ND 3.64

20:4n�6 ND 0.81

20:5n�3 ND 14.27

22:5n�3 ND 2.05

22:6n�3 ND 8.70

ND, not detected.
a Expressed as percentage of total fatty acids.

Table 3

Effect of CO and FO on body composition and BMD in aging C57BL/6

female micea

Parameters Diet P

CO FO

Body weight (g) Baseline 25.06F0.40 25.63F0.37 NS

Final 38.16F0.41 39.60F0.38

Total body fat

mass (g)

Baseline 4.04F0.34 3.94F0.31 NS

Final 14.78F0.35 15.26F0.32

Total body lean

mass (g)

Baseline 16.92F0.31 16.96F0.29 NS

Final 15.13F0.32 15.06F0.30

DFM (g/cm2) Baseline 0.090F0.002 0.092F0.001 b .001

Final 0.091F0.002 0.111F0.002b

PTM (g/cm2) Baseline 0.074F0.002 0.074F0.002 b .01

Final 0.075F0.002 0.092F0.002b

FD (g/cm2) Baseline 0.063F0.002 0.064F0.001 b .05

Final 0.079F0.002 0.087F0.001b

TD (g/cm2) Baseline 0.046F0.001 0.047F0.001 b .05

Final 0.048F0.001 0.054F0.001b

L2 (g/cm
2) Baseline 0.066F0.002 0.066F0.002 NS

Final 0.055F0.002 0.047F0.002

Baseline, 12 months; final, 18 months; NS, not significant.
a Values are expressed as meanFS.E.M. (n =5).
b Significantly different from CO control at P b.05 (unpaired t test;

18-month-old mice).
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metaphysis (DFM) including cancellous (trabecular) bone,

proximal tibial metaphysis (PTM), femoral diaphysis (FD),

tibial diaphysis (TD) and lumbar vertebra 2 (L2). The

intrascan coefficient of variation (CVi) was 0.79%, 3.30%,

1.35%, 3.48% and 1.19% for DLF, PLT, CLF, CLT and L3,

respectively. The interscan coefficient of variation (CVr)

was 5.47%, 3.86%, 5.12%, 1.36% and 2.37% for DFM,

PTM, FD, TD and L3, respectively. The CV are in

agreement with studies examining the precision and

accuracy of the PIXImus densitometer [31,32].

2.3. Collection of serum, bone marrow and tissues

At 18 months, the mice were sacrificed, and blood was

collected and centrifuged at 10,000�g for 10 min at 48C.
Serum was removed and stored at �708C until analysis.

Spleens were collected aseptically in complete RPMI 1640

medium for splenocyte preparation [11]. Bone marrow was

collected in DMEM medium [33].

2.4. Serum biochemistry

The serum activity of total ALP was measured with a

Quantichrom Alkaline Phosphatase Assay Kit (Bioassay

Systems, Hayward, CA). OC was measured with a Mouse

Osteocalcin EIA Kit (Biomedical Technologies, Inc.,

Stoughton, MA).

2.5. Splenocyte preparation and culture

Spleens were aseptically removed and placed in 5 ml of

RPMI 1640 media (Gibco, Grand Island, NY) supplemented

with 25 mmol/L HEPES, 2 mmol/L glutamine, 100,000 U/L

penicillin and 100 mg/L streptomycin (Gibco). Single-cell

suspensions were made by teasing spleens between frosted

ends of two sterile glass slides. After a 5-min centrifugation

at 100�g to separate cells from debris, the cells were

washed twice in RPMI medium. Splenic lymphocytes were

isolated by layering over Histopaque (Sigma, St. Louis,

MO), centrifuging at 1000 rpm for 15 min at 228C and then

washing twice in RPMI 1640 complete medium. Cells were

counted, and viability was determined by trypan blue

exclusion method. Cells (1�106 cells/well) were plated in
96-well plates, and concanavalin A (conA) was added at a

concentration of 1.0 Ag/ml for 48 h at 378C in a humidified

atmosphere of air/CO2 95:5 (mol%). After 48 h, the culture

medium was collected and analyzed for TNF-a? and IL-6

by standard enzyme-linked immunosorbent assay (ELISA)

techniques [11].

2.6. Cytokine measurement in cultured splenocytes

TNF-a and IL-6 were measured by ELISA with BD

OptEIA ELISA kit (BD Biosciences Pharmingen, San

Diego, CA) [34]. Assay sensitivity was approximately

1 pg/ml. In brief, each well of flat-bottom 96-well microtiter

plates was coated with 100 Al of purified anti-TNF-a and

anti-IL-6 antibodies (4 Ag/ml in binding solution) overnight

at 48C. The plates were rinsed four times with washing

buffer, and the culture medium was added, followed by

incubation for 2 h at room temperature. The plates were

washed four times with washing buffer, followed by the

addition of biotinylated anticytokine antibodies. The plates

were incubated in room temperature for 1 h and then washed

four times with washing buffer. Streptavidin–ALP conjugate

was added, and the plates were incubated for 30 min at room

temperature. The plates were again washed four times with

washing buffer, and chromogen substrate was added. The

plates were then incubated at room temperature to achieve

the desired maximum absorbance and were read at 410 nM

in an ELISA reader (Dynex Technologies, UK).

2.7. Bone marrow cell culture

Bone marrow cells from the tibias and femurs of CO-fed

and FO-fed mice were cultured as described previously by

Rahman et al. [33]. Briefly, cells were suspended in a-MEM



Table 4

Effect of CO and FO on serum bone formation biomarkers in 18-month-old

C57BL/6 female micea

Serum parameters CO FO P

OC (ng/ml) 7.75F1.46 12.84F4.85 NS

ALP (U/L) 14.61F1.30 18.06F1.95 NS

a Values are expressed as meanFS.E.M. (n =5).
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containing 15% fetal calf serum and cultured in 48-well

plates (1�106 cells/ml). Osteoclast differentiation was

induced in the presence of macrophage colony-stimulating

factor (M-CSF) (20 ng/ml) and soluble receptor activator of

nuclear factor (NF) nB ligand (sRANKL) (30 ng/ml) for a

4-day culture. At the end of the culture, the cells were fixed

and then stained with a commercial kit for TRAP (no. 387A;

Sigma), a marker enzyme for osteoclasts. TRAP+ cells with

more than three nuclei were counted as osteoclasts

[multinucleated cells (MNCs)].

2.8. Fatty acid analysis

Serum total lipids were extracted by the method of Folch

et al. [35] using chloroform–methanol (2:1). The organic

phase, containing total lipid extracts, was dried under a

stream of nitrogen, and the residue was methylated according

to the method of Kates [36]. Fatty acid methyl esters were

separated and quantified by gas–liquid chromatography

using a Hewlett-Packard 5890A series II gas chromatograph,

equipped with a DB225MS capillary column (J&W Scien-

tific, Folsom, CA) and a flame ionization detector (FID). The

injection and detector port temperatures were 2258C and

2508C, respectively. The oven temperature was maintained

at 1708C for 1 min and then increased to 2158C at a rate of

58C/min. Helium was used as the carrier gas. The running

time of each sample was approximately 36 min. Fatty acid

methyl esters were identified by the comparison of their

retention times with the fatty acid methyl ester standard from

Matreya LLC (Pleasant Gap, PA). Quantification was done

by an integrator (Hewlett-Packard 3396 series II) attached to

a GLC machine, and results were expressed as area

percentages. Oil samples were treated similarly beginning

at the methylation step [37].
Fig. 1. TNF-a and IL-6 production in conA-stimulated splenocytes isolated f

*Significantly different from conA-stimulated CO control at P b.05 (unpaired t t
2.9. Statistics

Data are expressed as meanFS.E.M. Results were

analyzed by unpaired t test using Graph Prism software,

and Pb.05 was considered significant.
3. Results

3.1. Effect of dietary fat on body composition and BMD

Body weight and fat mass increased, and lean mass

decreased, with time in both CO-fed and FO-fed mice.

However, there was no difference in any of these parameters

between CO-fed and FO-fed mice after 6 months of dietary

treatment. However, BMD significantly increased in DFM

(+20.6% vs. baseline), PTM (+24.3% vs. baseline) and TD

(+14.9% vs. baseline) bone regions in FO-fed mice, whereas

BMD increased minimally in CO-fed mice (DFM: +1.1%

vs. baseline; PTM: +1.4% vs. baseline; TD: +4.4% vs.

baseline). BMD increased significantly in the FD bone

region in both CO-fed and FO-fed mice, but the increase

was higher in FO-fed mice (CO: +25.4% vs. baseline; FO:

+35.9% vs. baseline). Although BMD was decreased in the

L2 bone region in both CO-fed and FO-fed mice compared

to baseline (CO: �16.7% vs. baseline; FO: �28.8% vs.

baseline), no difference in BMD values was observed

between the dietary groups at the final time point (Table 3).

Thus, our results suggest that FO-fed aging mice maintain

higher cancellous and cortical BMD compared to CO-fed

mice in major bone compartments.

3.2. Serum biomarkers

Higher ALP and OC activities were observed in FO-fed

mice compared to CO-fed mice, but the results were not

statistically significant (Table 4).

3.3. Pro-inflammatory cytokine production in

activated splenocytes

TNF-a activity in conA-stimulated splenocytes was

significantly decreased in FO-fed mice compared to CO-

fed mice. IL-6 was also decreased in FO-fed mice; however,

the effect was not statistically significant (Fig. 1).
rom 18-month-old C57BL/6 female mice fed CO or FO for 6 months.

est).



Fig. 2. (A) Formation of TRAP+ MNCs in mouse bone marrow cultures isolated from CO-fed and FO-fed C57BL/6 female mice and treated with sRANKL and

M-CSF. (B) MNC count in CO-fed and FO-fed mice. *Significantly different from CO control at P b.01 (unpaired t test).

Table 5

Selected fatty acid composition of serum total lipids in 18-month-old

C57BL/6 female miceaa

Fatty acids CO FO

14:0 0.31F0.00 1.15F0.07b

16:0 17.02F0.51 19.08F0.55

16:1n�9 2.21F0.04 5.59F0.67b

18:0 11.63F0.02 7.31F0.24b

18:1n�9 12.98F0.21 12.82F1.79

18:2n�6 22.35F0.61 7.77F0.72b

20:3n�6 0.82F0.08 0.24F0.01b

20:4n�6 25.71F1.74 6.79F0.11b

20:5n�3 ND 24.96F1.73b

22:4n�6 0.15F0.00 ND

22:5n�6 0.45F0.01 ND

22:5n�3 ND 0.81F0.08b

22:6n�3 4.59F0.04 10.09F0.86b

a Values are expressed as percentage of total fatty acids and as

meanFS.E.M. of 5 mice/group.
b Significantly different from CO control at P b.05 (unpaired t test).
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3.4. Bone marrow osteoclast formation

In cultures of mouse bone marrow cells, TRAP+

osteoclast-like cells are formed in the presence of M-CSF

and sRANKL [33]. We examined the formation of

osteoclast-like cells in CO-fed and FO-fed mice. Our results

clearly indicate significantly decreased TRAP+ MNCs in

FO-fed mice compared to CO-fed mice (Fig. 2A and B).

3.5. Serum fatty acids

The effect of dietary n�3 and n�6 fatty acids on the

fatty acid composition of serum total lipids is presented in

Table 5. CO-fed mice had higher levels of n�6 fatty acids

(18:2n�6, 20:3n�6 and 20:4n�6) and 18:0 compared to

FO-fed mice, which maintained significantly higher levels

of 16:1n�9 and 22:6n�3. While 20:5n�3 and 22:5n�3
were present only in FO-fed mice, 22:4n�6 and 22:5n�6
were detectable only in CO-fed mice.



A. Bhattacharya et al. / Journal of Nutritional Biochemistry 18 (2007) 372–379 377
4. Discussion

Most n�3 fatty acid studies on bone metabolism have

been performed in growing mice, rats, chicks and piglets

[14–16,23–26,38–42]. However, higher bone mineral con-

tent and cortical+subcortical BMD were recently reported in

middle-aged male rats fed 20% FO compared to rats fed

20% safflower oil (SFO) [27], which correlated to higher

bone PGE2 and serum pyridinoline production in SFO-fed

rats. In the present study, we measured BMD in vivo using

DEXA in cancellous and cortical bones of the femur, tibia

and lumbar spine in aging C57BL/6 female mice. When

12-month-old mice were fed either 10% CO or 10% FO for

6 months, FO-fed mice were found to maintain higher

BMD in both pure cortical bone and cancellous bone.

These findings correlated with a decreased activity of pro-

inflammatory cytokines (TNF-a and IL-6 in activated

splenocytes), a nonsignificant but greater increase in bone

formation markers (OC and ALP in serum) and lower

osteoclast generation in bone marrow cell cultures.

The importance of PUFAs in bone metabolism was

exhibited when Kruger and Horrobin [43] found that EFA-

deficient animals develop osteoporosis together with in-

creased renal and arterial calcification. They further found

that g-linolenic acid (GLA)+EPA inhibit bone resorption in

EFA-deficient young growing male rats by decreasing bone

turnover parameters compared to mice fed LA+ALA

[24]. Moreover, in calcium (Ca)-deficient elderly women,

18 months of treatment with Ca, along with EPA+GLA,

showed improved lumbar spine and femoral BMD [44].

More recently, rats deficient in n�3 lipids were shown to

have a decreased structural integrity of the tibia compared to

rats adequately supplemented with n�3 lipids [45]. When

deficient rats were repleted with n�3 lipids, accelerated

bone modeling and improved second moment were ob-

served. These studies suggest that PUFAs, in particular n�3
fatty acids, could be key modulators of bone metabolism.

Claassen et al. [23] have indicated the importance of PUFAs

in the regulation of Ca metabolism. Rats fed GLA+EPA

showed increased Ca absorption from the intestine, de-

creased loss of urinary Ca and increased bone Ca content.

Moreover, rats fed EPA-enriched FO also showed decreased

Ca deposition in the kidneys and aortas [46]. This may be

one of the mechanisms by which FO or n�3 fatty acids

improve BMD.

It is well established that aging is associated with an

increase in pro-inflammatory cytokines such as IL-1h, IL-6
and TNF-a [47–51]. These cytokines are key regulators of

osteoclastogenic activity and have been shown to increase

bone resorption [52–54]. Furthermore, these cytokines

induce the expression of COX-2 in osteoblastic and stromal

cells, resulting in an increased production of PGE2, which is

also an essential factor in osteoclastogenesis [55,56]. Our

present study found a lower activity of TNF-a and IL-6 in

FO-fed mice, which, in part, could explain the maintenance

of higher BMD in these mice. Previous studies have shown
that FO and n�3 fatty acids decrease the expression and

activity of these cytokines, both in vivo and in vitro

[11,57,58]. We have also shown a decreased mRNA

expression of these cytokines in immune cells and kidney

tissues from autoimmune disease animal models treated

with n�3 fatty acids or FO [59–62]. n�3 fatty acids or FO

has also been shown to decrease PGE2 production in bone

organ cultures and gingival tissues, which may be associated

with improved BMD [14–16,28,63]. Although we did not

measure PGE2 in bone organ cultures in the present study, it

is likely that a decreased activity of pro-inflammatory

cytokines may have lowered PGE2 levels in these mice,

which could play an additional role in the beneficial effect

of FO on BMD. Our recent data showed decreased COX-2

expression and PGE2 activity in kidneys of FO-fed and

calorie-restricted autoimmune-disease-prone NZB/W female

mice [64].

A decreased activity of IL-6 and TNF-a may also explain

the lower bone marrow osteoclast generation in FO-fed mice

in the present study. Previous studies have shown that TNF-

a and IL-6 promote bone resorption by increasing osteoclast

differentiation [17–19]. We earlier showed that EPA and

DHA, alone or in combination, decrease 1,25(OH)2D3-

stimulated osteoclast formation in cultured bone marrow

cells, compared to treatment with LA and AA [11].

Moreover, Iwami-Morimoto et al. [25] showed decreased

osteoclast formation and alveolar bone resorption in rats

fed 10% FO compared to rats fed 10% CO. NF-nB is

recognized as one of the key factors involved in the

pathogenesis of osteoporosis, which is involved in a

signaling pathway that leads to increased osteoclast gener-

ation and activation [11]. Our previous in vitro study found

significant inhibition of RANKL-mediated NF-nB activa-

tion in bone marrow macrophages by EPA and DHA, alone

or in combination, in contrast to n�6 fatty acids, which had

no effect [11]. Although we did not measure NF-nB
activation in the present study, its inhibition may be one

of the potential mechanisms in the beneficial effect of FO

on BMD.

We measured ALP and OC in the serum as biomarkers of

bone formation. Although FO-fed mice showed a higher

activity of these markers, the results, however, were not

statistically significant. A lower ratio of n�6/n�3 fatty

acids previously increased bone-specific ALP activity, but

not OC activity, in growing rats, indicating higher bone

formation [14]. Based on our results, it may be reasonable to

conclude that higher bone formation may not alone account

for the beneficial effect of FO in the present study.

Inhibition of pro-inflammatory cytokines and lower osteo-

clast generation suggest that higher BMD in FO-fed mice

may be associated, in part, with both decreased bone

resorption and higher bone formation. More studies with

n�3 fatty acids and different ratios of n�6/n�3 fatty acids

are warranted soon in middle-aged and older animals to

establish their mechanism of action in modulating bone

mass during aging.
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